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Non-Newtonian Molecular Dynamics and 
Thermophysical Properties I 

H. J. M. Hanley  2 and D. J. Evans 2'3 

The main theme of the paper is to review computer simulation as a tool to 
study mechanisms in fluids and to understand better fluid behavior. The 
relationship between molecular dynamics and thermophysical properties of 
fluids is reviewed very briefly. The standard simulation algorithms that are 
available are listed. We emphasize, however, the importance of the recent 
molecular dynamics techniques that incorporate non-Newtonian equations of 
motion. Two topics are introduced as examples. First, the evidence of a 
transient solid-like structure observed from simulations of a dense model 
two-dimensional liquid is reported: we speculate that the transient structure 
influences the density dependence of many thermophysical properties of the real 
liquid. Second, a discussion of the structure factor of a system under shear, and 
its relation to the properties of the fluid, is given. 
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1. I N T R O D U C T I O N  

M o l e c u l a r  d y n a m i c s  is the m o s t  c o m m o n  va r i an t  of  c o m p u t e r  s imula t ion ,  

and  one  cou ld  a rgue  tha t  c o m p u t e r  s imu la t i on  is the single m o s t  i m p o r t a n t  

p r o c e d u r e  in c o n d e n s e d  m a t t e r  t h e o r y  i n t r o d u c e d  since the tu rn  of  the  

century .  S i m u l a t i o n  is c o m p l e t e l y  i n t eg ra t ed  wi th  t h e r m o d y n a m i c s  and  
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statistical mechanics. Many basic techniques are standard and unlikely to 
change in the future. In fact, it is not even necessary to have a background 
in computing to use its tools. Nevertheless, the potential of simulation 
is only beginning to be fully realized. New results are published almost 
every day. We discuss here a very recent versatile molecular dynamics that 
incorporates non-Newtonian equations of motion for a system. 

The paper is organized by first commenting briefly on the principles of 
molecular dynamics. A list of references for the techniques and algorithms 
available is presented. The basic concepts of the new molecular dynamics 
method are then outlined. Two applications from our own work are 
discussed to illustrate the power of simulation to understand better liquid 
behavior and to show how simulation contributes to the prediction of 
thermophysical properties. 

As an introductory aside, we would like to remark that property data 
are often treated in isolation without any real feel for what they represent. 
Hence it is important to recall that properties are the quantitative measure 
of how a system responds to a disturbance; data are characteristic of a 
phenomenon. We feel, therefore, that one needs to understand the 
phenomenon as best one can to get a better representation of the data. 
Computer simulation is invaluable in this context. We also assume that the 
principle goal of theoretical fluid property work is to develop predictive 
procedures and that it is taken for granted that these procedures should be 
as soundly based on statistical mechanics as possible. 

2. BASICS OF MOLECULAR DYNAMICS 

The concepts and techniques of molecular dynamics (MD) are well 
documented. There are two sources that are particularly useful: a very 
recent text, Computer Simulation of Liquids, by Allen and Tildesley [1 ], 
and the article on non-Newtonian molecular dynamics by Evans and 
Morriss [2-]. These references include practical discussions on pro- 
gramming and list many computer codes. The manual of Haile [-3] is also 
very helpful. An important source of current information on algorithms 
and programming is the Daresbury Laboratory Information Quarterly [4].  
The symposia proceedings of Ref. 5 contain a typical cross section of 
current work on applications of simulation to applied statistical mechanics 
and thermodynamics. The International Journal of Thermophysics is a 
particularly good source for articles with this bias, especially the volumes 
reporting on the 9th Symposium on Thermophysical Properties [6]  and 
the forthcoming issues for the 10th Symposium. 

For more formal discussions on the state-of-the-art of simulation, we 
recommend the conference proceedings published as Ref. 7. The inter- 
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relation of computer simulation with fundamental statistical mechanics, 
especially with regard to non-Newtonian molecular dynamics, is discussed 
in the lecture notes of Hoover [8] and in the forthcoming book by Evans 
and Morriss [9]. 

2.1. Conventional Molecular Dynamics: The Microcanonical Ensemble 

The basis of a molecular dynamics simulation of a fluid is the solution 
of Newton's equation of motion. At a given density, p, N molecules (typi- 
cally 100-200) of mass m are placed in a box, the unit cell, of volume V 
such that the density p = N / V  and V= L 3, where L is the box length. The 
molecules are given initial positions ri(0), and velocities, ti(0), with 
i--1, N. The usual practice is to reduce all variables by a length, energy, 
and mass parameter and set the parameters equal to one. The time evolu- 
tion of the system follows from a solution of Newton's equations: 

i: i = p , /m and [~i = F, (1) 

where Pi is the peculiar momentum of particle i and Fg = - ~  (?~bi/~?ru, with 
~ / t h e  intermolecular pair potential energy and r 0 = r i -  rj. The equations 
are solved numerically using a time step or increment, At. The properties 
of the fluid are the appropriate statistical averages taken over several 
thousand time steps. The kinetic temperature is T =  (1/3N)~2 rnf~, for 
example. The fact that we have to work with a small a number of particles 
(compared with Avogadro's number of 10 23) is compensated for by incor- 
porating periodic boundaries, i.e., by surrounding the unit cell with an 
infinite array of its periodic images. The potential energy of particle i is 
evaluated by considering the shortest distance between particle i and 
particle j, whether j is in the unit cell or is an image. Further, should a 
particle leave the cell in the course of time, it is replaced by its image from 
a neighboring cell. 

The main requirements of MD are as follows. 

(i) The pair potential characteristic of the particles is given; if the 
particles are molecules with structure, the atom atom potential 
and the constraints of the model molecule (i.e., rigid diatomic, 
etc.) are given. 

(ii) Usually, but not necessarily, the total potential, (b, is taken as 
the sum of the potential from all particle pairs. 

(iii) The particles in the box are assumed to represent the system as 
a whole unless specific steps are taken to ensure otherwise. 
Caution is needed if the range of the pair potential is of the 
order of L. 

840/11/2-7 
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2.2. N o n - N e w t o n i a n  Molecular  D y n a m i c s  

The basis of conventional MD is standard; programming details and 
tricks are described in Refs. 1 and 3, for example. Conventional MD is not 
ideal, however. Solving Newton's equations of motion restricts the simula- 
tion to the (N, V, E) microcanonical ensemble and this ensemble is not 
convenient in practice since a more practical set of variables, such as the 
temperature and/or pressure, is often preferred. This limitation was 
addressed by Evans [2]  and by Hoover [-8] and their co-workers. Evans 
and Hoover proposed a broader simulation technique based on general 
equations of motion of which Newton's are a special case. 

Consider an N-particle system subject to a constraint that can be 
written in the form, 

g(r, f, t) = 0 (2) 

where r and r are 3N-dimensional vectors. In general, g depends on the 
position and velocity of the particles and on time. Differentiation of Eq. (2) 
with respect to time gives the differential form for the constraint equation, 

n(r, f, t ) .  i: = s(r,/' ,  t) (3) 

where n and s are also functions of position velocity and time in general. 
The constraint satisfying equation of motion can be written as 

0 = F - 2n (4) 

where F is the unconstrained (Newtonian) force and 2u is the force of 
constraint. The direction of the constraint force is determined from the 
condition that its magnitude is a minimum. Substitution of Eq. (4) into 
Eq. (3) yields for the multiplier, Z, 

2 -- [ (n .  F ) - s ] / n  2 (5) 

Example." The Isokinetic Ensemble. Suppose the constraint function g 
is 

(1/2) mf 2 - (3/2)NkB T =  O. (6) 

This constraint will fix the equipartition estimate for the temperature. 
Differentiating Eq. (6) so that it is in the form of Eq. (3), we get 

~ p , . p , = O .  (7) 
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Hence the equation of motion for particle i is 

Pi : F i -  ~Pi 

with 2 given by 

A : ~-~ Fi. pi 
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(8) 

p~ (9) 

One sees that only a trivial modification to a conventional MD program 
is required to fix the "kinetic temperature." 

It is straightforward to show that the ensemble generated by these 
equations of motion is canonical at equilibrium for the configurational 
degrees of freedom [e ~ ]  and microcanonical for the kinetic degrees 
of freedom [6(K-3NkT/2)]. The ensemble is thus halfway between a 
canonical and a microcanonical ensemble. (Nose and Hoover have, 
however, proposed slightly more complex equations of motion which 
generate the true canonical ensemble [8].) 

As an aside, we remark that this new approach to molecular dynamics 
has often been misunderstood. It is important to remember that, while the 
motion of particles obey Newton's equations in principle, one can solve 
these equations only for an isolated system, and no macroscopic systems 
are ever totally isolated. The isokinetic equations of motion provide a 
dynamics which correctly predicts the equilibrium macroscopic properties 
of the isokinetic ensemble. In the thermodynamic limit, thermophysical 
properties are insensitive to the precise details of the microscopic particle 
trajectories. Many sets of equations of motion can, in principle, produce 
identical and correct thermodynamic averages. We should use the simplest 
and most convenient dynamics. These new dynamical systems are simply 
the dynamical generators of Gibbs' various equilibrium ensembles. It has 
also been proved that in the thermodynamic limit, isokinetic dynamics 
correctly predicts equilibrium time correlation functions and therefore 
linear transport coefficients. 

Example: Nonequilibrium Molecular Dynamics (NEMD). A most 
attractive feature of non-Newtonian molecular dynamics is that one can 
simulate the behavior of a system out of equilibrium. Let us consider an 
isokinetic system subject to planar Couette flow. The shear rate 7, defined 
as Oux/Oy, where u is the streaming velocity, is imposed on the system by 
means of time varying displaced periodic boundaries. Should a particle 
leave the unit cell through a face parallel to the x-axis, it is replaced by its 
reentrant image displaced in the x-coordinate by • At nx, where n x is a 
unit vector in the x-direction. Its velocity is shifted by _+7Lnx. 
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The thermostated equations of motion for the system using the 
constraint Eq. (6) are 

fi = p j m  + nxyYi, Pi = F i -  nxYPyi - 2pi 

and 2 is the thermostating multiplier given by 

(lO) 

2 =  2 (P'" Fi -YPx 'PY ' )  (11) 
Zp, 

Example." The Rigid Diatomic Molecule. The idea of writing a 
convenient equation of motion with constraints is quite general and can be 
applied in principle to any system provided the constraint can be cast in 
the form of Eq. (2). For  a diatomic fluid of rigid molecules, for example, 
if r12 = r 2 -- r I is the bond vector, we can write 

r12. i:~2 + f22 = 0 (12) 

The constrained equations of motion for sites 1 and 2 are thus 

,~ = [F12 .r12 q- i'22]/2r~2 

(13) 

(14) 

whence 

where F12 = F2 - F1. 
The three examples demonstrate the versatility of the approach. 

Combinations of constraint conditions are, of course, possible; for instance, 
one could write the equations of motion for a system of rigid diatomic 
molecules undergoing shear at constant temperature from the equations we 
have given here. We refer to Ref. 2 for details and for discussions of many 
other applications. 

3. THE BEHAVIOR OF LIQUIDS 

Our understanding of fluid behavior has been richly enhanced by 
computer simulation. A simulation is unambiguous; the results reflect 
exactly the effects of an assumption imposed on the model liquid. Further, 
we have exact control of the "experimental" variables. We can thus probe 
a system on a time or length scale that would be difficult or impossible to 
replicate in the laboratory. 

The early simulations of the hard sphere fluid--simulations of the 
equilibrium behavior [10] and simulations of the self-diffusion coefficient 
E11 ], in particular--revitalized the theory of liquids. For example, the 
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equilibrium results demonstrated that a fluid could freeze without Van der 
Waals attraction. They emphasized the dominant role played by particle 
size (the radial distribution function of a dense hard sphere liquid is very 
similar to that of real simple liquids). The numerical results for the hard 
sphere liquid meant that powerful perturbation theories of liquids could be 
used as practical tools [12]. In the context of thermophysical properties, 
the last two consequences are the basis directly or indirectly for nearly 
every prediction procedure. The self-diffusion studies demonstrated the 
importance of long-range phenomena in a liquid and were the impetus for 
a complete reevaluation of classical kinetic theory and nonequilibrium 
statistical mechanics. 

We present here two recent examples of how a molecular dynamics 
simulation increases our understanding of fluids, and the relevance of the 
results to the prediction of thermophysical properties is pointed out. Both 
examples involve calculating the structure factor, S(k), where k is the 
momentum transfer, of the two-dimensional soft disk liquid whose particles 
interact with the 1/r 12 potential. The simulations were based on the 
constrained equation of motion algorithms outlined in Section 2. There is 
little loss of generality in looking at the structure factor of a fluid in two, 
as opposed to three, dimensions; the results are more easily realized and 
are more straightforward to interpret. The simple potential model is also 
not restrictive because, as remarked, the structure of the liquid is 
dominated by the fact that the particles have size. 

3.1. Transient Structure in a Dense Liquid 

The first example addresses the experimental observation that several 
thermophysical properties are very strong functions of density, especially at 
densities exceeding about 2.5pc (or exceeding two-thirds of the freezing 
density), where p~ is the critical density. Figure 1 shows the density 
dependence of the velocity of sound and the viscosity; Fig. la illustrates the 
velocity of sound of ethane [13], and Fig. lb the viscosity of propane 
[14]. The behavior of both properties is typical for all relatively simple 
fluids. The density variation for the viscosity is particularly dramatic. In 
general, thermophysical properties can be predicted from conventional 
corresponding states and the statistical mechanical theories of liquids if the 
density is less than about twice critical; above that density, the conven- 
tional theories of liquids tend to break down. Alternatively, some authors 
base predictive procedures on the behavior of the solid or the very dense 
liquid. In these cases the procedures do not extrapolate well to the lower 
densities. The problem is to account correctly for the marked density 
behavior. 
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We reported in Ref. 15 a study of transient local order in the two- 
dimensional soft disk fluid. The objective was to evaluate S(k) as a 
function of time and of position in the system. Simulations were carried out 
for 896 particles at a reduced temperature of 1 and for reduced densities in 
the range 0.3 ~< p ~< 0.98 and for one density of 1.05 in the solid (the freezing 
density is 0.986). The simulation technique made use of the isokinetic 
ensemble equations described in Section 2.2 [2].  To evaluate S(k) we 
extracted the positions, r e , of the particles from the simulation run at an 
arbitrary time. These positions were then represented as transparent dots 
on black photographic film. We then regarded the film as a scattering 
medium. The structure factor was obtained by the direct measurement of 
the diffraction pattern from the film when light from a He/Ne laser was 
passed through it. Composite plots were prepared that consisted of 36 sets 
taken at random times from the simulation. 

The procedure was repeated for a system of 3584 particles: structure 
factors were extracted by viewing the sample as a chole and by stopping 
down the light aperture to look at smaller segments of about 800 particles. 

Averages of the structure factors for the 896-particle system are shown 
in Fig. 2. Figure 2a displays the hexagonal crystalline pattern of the solid 
at p = 1.05, Fig. 2b depicts the typical radially symmetric pattern of the 
dense liquid at p=0.95,  and Fig. 2c shows the diffuse pattern of the 
moderately dense liquid at p = 0.3. Contrast Fig. 2b, however, with some 
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Fig. 1. (a) The density variation of the velocity of sound (m .s -1) of 
ethane at room temperature [13]. The critical density of ethane is 
6 .7mol-L -I.  (b) The density behavior of the viscosity (10ZPa.s) of 
propane at saturation [14]. The critical density of propane is 
5 .1mol .L 1. 
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snapshots of S(k) from individual configurations at p =0.95, shown in 
Fig. 3. Figure 3a shows the pattern expected of the liquid, but Fig. 3b, 
taken from the simulation 50 time steps later, indicates anisotropic features 
typical of the microstructure of the solid. In particular, the second diffuse 
ring in Fig. 3b appears hexagonal, while there are six bright spots in the 
inner ring. This hexagonal structure was clearly seen in approximately half 
the snapshots, and of course, the orientation of the hexagon varied. 

The structure factor of the 3584 particle liquid at p = 0.9238 is given 
in Fig. 4. Figure 4a is S(k) for the complete sample, i.e., obtained by 

Fig. 2. The average structure factors 
for an 896-particle soft disk liquid at 
three densities: (a) the solid at 
p = l . 0 5 ;  (b) the dense liquid at 
p =0.95; (c) the liquid at p =0.3. 
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exposing the film with all the particles to the laser beam, while S(k) in 
Figs. 4b and c were obtained from segments of the sample of about 800 
particles. Again, we see evidence of hexagonal order but recorded as a 
function of location within the system at a given time rather than of time 
as before. 

Order Parameter. The degree of hexagonal order was correlated as a 
function of density in terms of an order parameter, ~, defined as (cos 60), 
where 0 is the orientation angle between a particle and its neighbor found 
in a ring thickness dr, distance r away. The natural log of ~ is plotted 
versus density in Fig. 5. ~ varies from a value of 0.5 for the solid to 
essentially zero at about 0.7 of the freezing density. 

The analogy between the behavior of the order parameter in Fig. 5 
and the density behavior of the thermophysical properties in Fig. 1 and its 

Fig. 3. The structure factor for the 
liquid at p=0 .95  evaluated by light 
scattering from the simulation at two 
random times: (a) displaying a cir- 
cular pattern; (b) with evidence of the 
solid-like hexagonal pattern, espe- 
cially in the second band. 
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relevance to prediction procedures is very obvious. If the degree of 
hexagonal  order at a given density in a model fluid could be explained and 
predicted, then we would have a better insight as to why the density 
dependence of  most  real fluid properties is so strong. F rom the viewpoint 
of predicting the properties, the information learned could be invaluable. 

Fig. 4. S(k) for the 3584-particle 
liquid at a density of 0.9238. The S(k) 
(a) from exposure of the whole area of 
sample and (b, c) from different sub- 
sections of the area, each subsection 
containing about 800 particles. Note 
the hexagonal appearance in c. 
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Fig. 5. Plot of the order parameter versus density. The 
crosses are from the 896 system, the circle is from the 
3584 system, and the square is the point from the solid. 

3.2. Non-Newtonian Behavior 

For our second example we discuss the contribution of nonequilibrium 
molecular dynamics to understand better the non-Newtonian or rheo- 
logical behavior of liquids. 

Background. There is a traditional and arbitrary segregation between 
so-called "simple" and so-called "complex" liquids. Simple liquids are 
typified by argon, air, or gasoline, while complex liquids are bread dough, 
polymeric solutions, paint, and the like. A characteristic of the latter group 
is an exotic response under shear, apparently quite different from the 
corresponding response of simple liquids [16]. Shampoo does not flow in 
the same way as water, for example. Complex fluids are non-Newtonian 
(i.e., they do not obey Newton 's  law of viscous flow). One form of 
non-Newtonian behaviour is a shear rate dependent viscosity, e.g., 

P . =  -~(~)7 (15) 

where r/ is the shear viscosity, 7 is the shear rate, and Pxy is the xy com- 
ponent of the pressure tensor, P. Other forms of non-Newtonian behaviour 
include time- or, equivalently, frequency-dependent viscosity (namely, 
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viscoelasticity) and normal pressure differences (namely, Weissenberg 
effects) that arise because the diagonal elements of P are unequal, i.e., 

Pxx:~ PyyC P= (16) 

Computer simulation demonstrates that the separation between simple 
and complex fluids is indeed arbitrary because simulation results show that 
a simple fluid has non-Newtonian characteristics. Figure 6 displays the 
viscosity of a WCA (Weeks, Chandler, Anderson) fluid undergoing Couette 
flow evaluated by NEMD using the thermostating equations of motion, 
Eqs. (10) and (11). The viscosity is a linear function of ~1/2. The result in 
Fig. 6 is typical of a spherical model liquid. The simulation of non- 
Newtonian behavior of simple liquids and the consequences for the study 
of rheology in general have been discussed at length elsewhere [2, 7, 8, 
17, 18]. The principle conclusion of interest here is that one cannot 
distinguish between conventional Newtonian and non-Newtonian liquids 
on the basis of molecular structure alone. In fact, the NEMD data indicate 
that a Newtonian liquid is only a convenient abstraction, similar in spirit 
to the dilute gas. Contrary to widespread belief, therefore, non-Newtonian 
characteristics are not due solely to shear induced changes in intra- 
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Fig. 6. Plot of the viscosity versus shear rate of a Weeks Chandler 
Anderson (WCA) liquid at its triple point. The error bars at low y are quite 
large. The fact that this simple fluid is thus non-Newtonian is discussed in 
the text. 
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molecular structure--such as the uncoiling of a polymer. Shear-induced 
distortions in the intermolecular microstructure must be of paramount  
importance. We, therefore, thought it would be worthwhile to examine the 
structure of a sheared liquid via the structure factor, S(k). 

The Structure Factor of  a Sheared Two-Dimensional Fluid. We have 
discussed the simulation of the structure factor of model liquids in several 
papers and our results are summarized in Refs. 19 and 20. We illustrate the 
essence of the calculations here for the two-dimensional soft disk fluid close 
to freezing [21]. 

The structure factor was evaluated by the method outlined in Section 3.1 
with a shear imposed on the system: 896 soft disks interacting with the r-12 
potential at a temperature of 1 and a density of 0.9238 were subjected to 
shear rates in the range 0.1 ~<7~< 10. We evaluated S(k) directly as the 
average diffraction pattern obtained from photographs of the particle 
positions taken at random intervals from the simulation. The structure 
factor for the system at a shear rate 7 = 1.0 is shown in Fig. 7. Reference 21 
gives details and the results for the other values of 7. Compare  Fig. 7 with 
Fig. 2. The main difference is the distortion of the diffuse rings from a circle 
to an approximate ellipse with a major axis at about 3~r/4. 

The interpretation of the distorted structure factor is perhaps easier to 
explain in terms of the pair correlation function, g(r, 7), which is the 

Fig. 7. The structure factor of a two-dimensional 
soft disk liquid at p = 0.9238 subjected to a shear of 
7 = 1.0. Note the elliptical shape of the diffuse bands. 
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Fourier transform of S(k). The correlation function can be expanded by a 
Fourier series in polar coordinates: 

g(r, 7)= g(r, O, 7) 

= g, ( r ,  ~,) + y '  r-( , ,~,  L~o tr, 7)sinnO+g~")(r, 7) cosnO] (17) 

where (excluding the 7 dependence from the subsequent notation) 

gs(r) = (1/2z) f dO g(r, O) (18) 

and 

g~')(r) = (1/~t) f dO g(r, O) sin nO (19) 

g]"l(r) = (1/~) f dO g(r, O) cos nO (20) 

Figure 8 shows the schematic relationship between the pair correlation 

N E W T O N I A N  : 

g(r)  = geq(r) + g~2/sin 20 

E Q U I L I B R I U M  

g(r)  ~ gs(r) ~ geq(r) 

g(r) = gs(r) + .%[go)Sin nO + 

NON N E W T O N I A N  : 

g(r) = gs(r) + g~2/sin 2e + gl21cos2e + . . . . .  

Fig. 8. Schematic equations and diagrams illustrating 
the relation between the pair correlation function and 
the distorted microstructure of a fluid under shear. 

function and the distorted structure. At equilibrium g(r, 7 ) ~  geq(r), the 

IN G E N E R A L  
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radial distribution function, and an intensity plot of the Fourier transform 
S(k) is radially symmetric. For a Newtonian liquid, gs of Eq. (17) is geq(r) 
and the only other nonvanishing term in the expansion (17) is g(o2)(r, 7) 
sin 20. The structure factor is an ellipse with the major axis at 3~z/4. In the 
general case, (i.e., for a non-Newtonian fluid), all the coefficients are 
nonzero and the major axis of the ellipse moves off 3zc/4. 

The point made at the end of Section 3.1 is equally valid here. If we 
can understand the distortion of the microstructure of the model liquid, 
and if the expansion coefficients can be predicted, then one has made 
considerable progress in understanding the rheological behavior of real 
liquids. It turns out that we can indeed predict the coefficients to order 
n = 4 quite well, see Ref. 22. 

As is well known, the pair correlation function and the structure factor 
are measures of the thermophysical properties. The configurational parts of 
all thermophysical properties can be written as functionals of these 
distribution functions. This implies that the thermodynamic properties of a 
sheared fluid are 7 dependent. The thermodynamic properties of the fluid 
are given by the appropriate integrals of gs(r, 7). The shear viscosity coeffi- 
cient and coefficients for the normal pressure differences are given by the 
appropriate integrals of gl2)(r, 7), i = O, 1. 

4. SUMMARY AND CONCLUSIONS 

The two examples indicate how our understanding of the behavior of 
liquids is enhanced by studying a model fluid via molecular dynamics. Our 
objective has been to outline the contribution of MD to the theory of 
liquids in general and its role in predicting thermophysical properties in 
particular. The power and versatility of the simulation approach, however, 
are further illustrated by noting what has not been discussed in this short 
review. 

First, we have considered only molecular dynamics and thus have not 
covered other simulation techniques such as the Monte Carlo (see Ref. 1 
for a description of these methods). But we should point out that there is 
often no advantage in using Monte Carlo since the thermodynamic 
constraint techniques are available. All of Gibbs ensembles are now 
amenable to MD. (The single exception is the grand canonical ensemble.) 

Second, we have barely mentioned the most common use of simula- 
tion: MD is an essential tool for unambiguously testing a statistical 
mechanical theory. MD performs essentially exact statistical mechanical 
calculations for a precisely defined model system. In assessing prediction 
procedures by comparison with experimental data, one cannot always be 
sure whether failures arise because of an approximate intermolecular 
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potential function or because the statistical mechanical assumptions are at 
fault. The experimental data themselves may also be suspect. The problem 
is especially relevant today because of the interest in predictive procedures 
for the properties of mixtures. There is a substantial body of work on the 
applied statistical mechanics of mixtures and the proper choice of mixing 
rules: the prediction of the phase behavior of mixtures is especially sensitive 
to the scaling procedures and the mixing assumptions. Many authors are 
discussing the problem of extending corresponding states to include, for 
example, polar species. It is obvious from the literature that these lines of 
study would not exist without the backup of simulation [23]. 

Third, we have not mentioned the merits of computer "data" with 
respect to real experimental data. In spite of the difficulties in accurately 
determining intermolecular potential functions, there are a number of 
circumstances where computer simulations using accurate potentials 
provide the only reliable "experimental" information. Two well-known 
examples are geophysical fluid dynamics, where thermophysical properties 
are required for materials under extreme conditions of temperature and 
pressure, and protein and membrane dynamics, where simulation often 
provides the only source of information concerning molecular conformation 
and unfolding. (The interpretation of real experimental data is often so 
model dependent that it is completely unreliable.) 

Finally, this paper has not discussed the simulation of processes, such 
as fluid flow around a plate, the Weissenberg effect, flows in nozzles, 
studies in turbulence, and similar phenomena. 
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